Experimental Characterization of Unsharp Qubit Observables and Sequential Measurement Incompatibility via Quantum Random Access Codes

Phys Rev Lett. 2020 Aug 21;125(8):080403. doi: 10.1103/PhysRevLett.125.080403.

Abstract

Unsharp measurements are increasingly important for foundational insights in quantum theory and quantum information applications. Here, we report an experimental implementation of unsharp qubit measurements in a sequential communication protocol, based on a quantum random access code. The protocol involves three parties; the first party prepares a qubit system, the second party performs operations that return both a classical and quantum outcome, and the latter is measured by the third party. We demonstrate a nearly optimal sequential quantum random access code that outperforms both the best possible classical protocol and any quantum protocol that utilizes only projective measurements. Furthermore, while only assuming that the involved devices operate on qubits and that detected events constitute a fair sample, we demonstrate the noise-robust characterization of unsharp measurements based on the sequential quantum random access code. We apply this characterization towards quantifying the degree of incompatibility of two sequential pairs of quantum measurements.