Introduction: Auditory brainstem response (ABR) is one of the commonly used methods in clinical settings to evaluate the hearing sensitivity and auditory function. The current ABR measurement usually adopts click sound as the stimuli. However, there may be partial ABR amplitude attenuation due to the delay characteristics of the cochlear traveling wave along the basilar membrane. To solve that problem, a swept-tone method was proposed, in which the show-up time of different frequency components was adjusted to compensate the delay characteristics of the cochlear basilar membrane; therefore, different ABR subcomponents of different frequencies were synchronized.
Methods: The normal hearing group, moderate sensorineural hearing loss group, and severe sensorineural hearing loss group underwent click ABR and swept-tone ABR with different stimulus intensities. The latencies and amplitudes of waves I, III, and V in 2 detections were recorded.
Results: It was found that the latency of each of the recorded I, III, and V waves detected by swept-tone ABR was shorter than that by click ABR in both the control group and experimental groups. In addition, the amplitude of each of the recorded I, III, and V waves, except V waves under 60 dB nHL in the moderate sensorineural hearing loss group, detected by swept-tone ABR was larger than that by click ABR. The results also showed that the swept-tone ABR could measure the visible V waves at lower stimulus levels in the severe sensorineural hearing loss group.
Conclusion: Swept-tone improves the ABR waveforms and helps to obtain more accurate threshold to some extent. Therefore, the proposed swept-tone ABR may provide a new solution for better morphology of ABR waveform, which can help to make more accurate diagnosis about the hearing functionality in the clinic.
Keywords: Auditory brainstem response; Click; Sensorineural hearing loss; Swept tone.
© 2020 S. Karger AG, Basel.