Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with abnormal liver function tests. We hypothesized that early altered liver biochemistries at admission might have different clinical relevance than subsequent changes during hospitalization. A single-center retrospective study was conducted on 540 consecutive hospitalized patients, PCR-diagnosed with SARS-CoV-2. Liver test abnormalities were defined as the elevation of either gamma-glutamyltransferase (GGT), alanine aminotransferase (ALT), or aspartate aminotransferase (AST), above the upper limit of normality set by our laboratory. Linear mixed models (LMM) evaluated longitudinal associations, incorporating all available follow-up laboratory chemistries. By the end of the follow-up period, 502 patients (94.5%) were discharged (109 (20.5%) died). A total of 319 (64.3%) had at least one abnormal liver test result at admission. More prevalent were elevated AST (40.9%) and GGT (47.3%). Abnormalities were not associated with survival but with respiratory complications at admission. Conversely, LMM models adjusted for age and sex showed that longitudinal increases during hospitalization in ferritin, GGT, and alkaline phosphatase (ALP), as well as a decreased albumin levels, were associated with reduced survival. This dual pattern of liver damage might reconcile previous conflicting reports. GGT and ALP trajectories could be useful to determine who might need more surveillance and intensive care.
Keywords: COVID-19; hepatic biomarkers; mixed models.