Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), poses a risk of infection for livestock, humans, and wildlife. An interferon (IFN)-γ release assay has been used with tuberculin skin tests to detect bTB; however, infected animals may still be missed. Previous studies have suggested that bovine interleukin-2 (BoIL-2) may act as a potential biological marker for the diagnosis of bovine infectious diseases. However, a detailed evaluation of IL-2 as a diagnostic target for bTB is lacking. Therefore, we established hybridoma cell lines that produced monoclonal antibodies (mAbs) recognizing the native BoIL-2 and developed a flow cytometry assay, based on the BoIL-2 mAbs, for detecting M. bovis-specific IL-2. Subsequently, the method was utilized for a preliminary investigation of bTB in cattle; significantly (P < 0.0001) more CD4+IL-2+ T cells were detected in infected cattle than in healthy animals when a specific mycobacterial antigen CFP-10-ESAT-6 fusion protein was used. Moreover, our method demonstrated high coincidence rates with the BOVIGAM® test and an IFN-γ flow cytometry assay for the diagnosis of bTB. These findings show that the present method may be useful for detecting bTB.
Keywords: Bovine IL-2; Bovine tuberculosis; Diagnosis; Flow cytometry; Monoclonal antibodies.
Copyright © 2020 Elsevier B.V. All rights reserved.