Olive mill wastewater (OMW) is nowadays considered as a serious source pollution. At the same time, it contains high amounts of nutrients, especially potassium and phosphorus that could be recovered for agricultural purposes. The aim of the current experimental research work is to investigate the agronomic potential use of OMW based biochar produced from the slow pyrolysis at 500 °C of raw cypress sawdust (CS) impregnated with OMW (ICS-OMW-B). In order to understand the contribution of OMW, two additional biochars were produced from raw cypress sawdust (RCS-B) and cypress sawdust pretreated with potassium chloride (ICS-K-B). Results indicated that RCS impregnation by OMW significantly improved the produced biochar's chemical properties, especially its nutrients contents. Furthermore, in comparison with the other biochars, ICS-OMW-B application as an organic fertilizer showed promising results in terms of produced fresh and dry masses, as well as potassium bioavailability as assessed in test experiments with ryegrass. For instance, the dry matter masses of the rye-grass treated with ICS-OMW-B were about 23, 34 and 50 wt% higher than the ones measured for the tests using RCS-B, ICS-K-B and synthetic K-fertilizer as amendments, respectively. Besides, this biochar has a potential effect on the suppression of various pathogens existing in the tested agricultural soil. All these results demonstrated that the biochar generated from the slow pyrolysis of impregnated sawdust with OMW could be considered as attractive and promising organic fertilizer for acidic agricultural soils.
Keywords: Biochar; Cypress sawdust; Impregnation; Olive mill wastewater; Organic fertilizer; Pyrolysis.
Copyright © 2020 Elsevier B.V. All rights reserved.