Background: Studies have demonstrated an inverse relationship between body mass index (BMI) and the risk of developing lung cancer. We conducted a retrospective cohort study evaluating baseline quantitative computed tomography (CT) measurements of body composition, specifically muscle and fat area in a large CT lung screening cohort (CTLS). We hypothesized that quantitative measurements of baseline body composition may aid in risk stratification for lung cancer.
Methods: Patients who underwent baseline CTLS between January 1st, 2012 and September 30th, 2014 and who had an in-network primary care physician were included. All patients met NCCN Guidelines eligibility criteria for CTLS. Quantitative measurements of pectoralis muscle area (PMA) and subcutaneous fat area (SFA) were performed on a single axial slice of the CT above the aortic arch with the Chest Imaging Platform Workstation software. Cox multivariable proportional hazards model for cancer was adjusted for variables with a univariate p < 0.2. Data were dichotomized by sex and then combined to account for baseline differences between sexes.
Results: One thousand six hundred and ninety six patients were included in this study. A total of 79 (4.7%) patients developed lung cancer. There was an association between the 25th percentile of PMA and the development of lung cancer [HR 1.71 (1.07, 2.75), p < 0.025] after adjusting for age, BMI, qualitative emphysema, qualitative coronary artery calcification, and baseline Lung-RADS® score.
Conclusions: Quantitative assessment of PMA on baseline CTLS was associated with the development of lung cancer. Quantitative PMA has the potential to be incorporated as a variable in future lung cancer risk models.
Keywords: Lung cancer; Lung cancer screening; Quantitive pectoralis muscle area.