The present work analyzes the impact of biochar-induced modification of soil physico-chemical properties on intra-annual growth dynamics of pioneer and fibrous grapevine roots. A scanner inserted into a buried rhizobox with a transparent side facing the plant root system was used to acquire images of pioneer and fibrous roots of control and biochar-treated plants throughout the vegetative season. Images were analyzed with ImageJ software to measure root traits. Biochar treatment increased soil pH, nutrient concentration, and water content during the driest and warmest period, while bulk density was reduced. Analysis of both pioneer and fibrous root traits highlighted a single peak of growth during the vegetative season. Pioneer roots were thicker and grew faster than fibrous roots, which were longer and more numerous. Amelioration of physico-chemical properties of biochar-amended soil stimulated an earlier root lengthening, and a higher root number at the onset of the season, which resulted in a greater canopy development compared to control plants. Later, in summer, as a consequence of the higher water content of biochar-treated soil, plants modified their root architecture, lowering the number of fibrous roots probably because of the reduced need to exploit soil for water and nutrient uptake.
Keywords: Alisols; Biochar; Flatbed scanner; Grapevine; Image analysis; Root dynamics; Root morphology.
Copyright © 2020 Elsevier B.V. All rights reserved.