Background: To date there are no validated MRI biomarkers to assist diagnosis of Parkinson's disease (PD). Our aim was to investigate PD related iron changes in the substantia nigra pars compacta (SNpc) as defined by neuromelanin-sensitive MR contrast.
Methods: Thirty-nine PD participants and 33 healthy controls were scanned at 3.0-T using a 16-echo gradient echo sequence to create R2* maps for the evaluation of iron content to find the overlap with a neuromelanin based SNpc mask. The SNpc overlap percentage with the R2* map, and the R2* values in both the whole SNpc and the overlap volume were compared between PD and control groups, and correlated with clinical features for PD participants. Finally, the diagnostic performance of the SNpc overlap percentage was evaluated using ROC analysis.
Results: PD related iron changes mostly occur in the lateral-ventral part of the neuromelanin SNpc. The R2* values in the whole SNpc and the SNpc overlap volume, and the SNpc overlap percentage were larger in PD participants than in controls. Furthermore, the SNpc overlap percentage was positively correlated with the disease duration in PD. The SNpc overlap percentage provided excellent diagnostic accuracy for discriminating PD participants from controls (AUC = 0.93), while the R2* values in the whole SNpc or the overlap volume were less effective.
Conclusion: The overlap between the iron content as determined by R2* mapping and neuromelanin in the substantia nigra pars compacta has the potential to be a neuroimaging biomarker for diagnosing Parkinson's disease.
Keywords: Diagnostic biomarker; Overlap percentage; Parkinson’s disease; R(2)*; Substantia nigra pars compacta.
Copyright © 2020. Published by Elsevier Inc.