Antisymmetric Magnetoresistance in a van der Waals Antiferromagnetic/Ferromagnetic Layered MnPS3/Fe3GeTe2 Stacking Heterostructure

ACS Nano. 2020 Sep 22;14(9):12037-12044. doi: 10.1021/acsnano.0c05252. Epub 2020 Sep 9.

Abstract

The presence of two-dimensional (2D) layer-stacking heterostructures that can efficiently tune the interface properties by stacking desirable materials provides a platform to investigate some physical phenomena, such as the proximity effect and magnetic exchange coupling. Here, we report the observation of antisymmetric magnetoresistance in a van der Waals (vdW) antiferromagnetic/ferromagnetic (AFM/FM) heterostructure of MnPS3/Fe3GeTe2 when the temperature is below the Neel temperature of MnPS3. Distinguished from two resistance states in conventional giant magnetoresistance, the magnetoresistance in the MnPS3/Fe3GeTe2 heterostructure exhibits three states, of high, intermediate, and low resistance. This antisymmetric magnetoresistance spike is determined by an unsynchronized magnetic switching between the AFM/FM interface layer and the bulk of Fe3GeTe2 during magnetization reversal. Our work highlights that the artificial vdW stacking structure holds potential to explore some physical phenomena and spintronic device applications.

Keywords: antiferromagnetic/ferromagnetic structure; antisymmetric magnetoresistance; exchange coupling; unsynchronized magnetic switching; van der Waals heterostructure.