Introduction: Neisseria lactamica is a commensal bacterium of the upper respiratory tract in humans and is closely related to Neisseria meningitidis. N. lactamica colonization may contribute to preventing N. meningitidis colonization and invasive meningococcal disease. However, the transference of antimicrobial resistance genes from N. lactamica to N. meningitidis has been reported.
Methods: In this study, we aimed to identify N. lactamica using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and performed multilocus sequence typing of seven N. lactamica strains isolated from Japanese children. We also analyzed the antimicrobial susceptibility of these strains and the mutations in their antimicrobial resistance genes (penA, gyrA, and parC).
Results: All the N. lactamica strains could be identified using MALDI-TOF MS. All strains were of different sequence types (STs), including five new STs. Five strains had intermediate susceptibility, two were resistant to ampicillin, and all had five out of the five known PBP2 mutations. Six strains were resistant to levofloxacin. Among the quinolone-resistant strains, three had GyrA mutations, and three had both ParC and GyrA mutations.
Conclusions: N. lactamica STs may vary in Japanese children, and penicillin- and quinolone-resistant strains may be prevalent. We should pay attention not only to the drug resistance of N. meningitidis but also to the drug susceptibility of N. lactamica whose drug-resistance genes may transfer to N. meningitidis.
Keywords: Neisseria lactamica; Neisseria meningitidis; gyrA; parC; penA, QRDR.
Copyright © 2020 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.