Fluorophore-conjugated Helicobacter pylori recombinant membrane protein (HopQ) labels primary colon cancer and metastases in orthotopic mouse models by binding CEA-related cell adhesion molecules

Transl Oncol. 2020 Dec;13(12):100857. doi: 10.1016/j.tranon.2020.100857. Epub 2020 Aug 28.

Abstract

HopQ is an outer-membrane protein of Helicobacter pylori that binds to human carcinoembryonic antigen-related cell-adhesion molecules (CEACAMs) with high specificity. We aimed to investigate fluorescence targeting of CEACAM-expressing colorectal tumors in patient-derived orthotopic xenograft (PDOX) models with fluorescently labeled recombinant HopQ (rHopQ). Western blotting, flow cytometry and ELISA were performed to determine the efficiency of rHopQ binding to CEACAMs. rHopQ was conjugated to IR800DyeCW (rHopQ-IR800). Nude mice received orthotopic implantation of colon cancer tumors. Three weeks later, mice were administered 25 μg or 50 μg HopQ-IR800 and imaged 24 or 48 h later. Intravital images were analyzed for tumor-to-background ratio (TBR). Flow cytometry and ELISA demonstrated binding of HopQ to CEACAM1, 3 and 5. Dose-response intravital imaging in PDOX models demonstrated optimal results 48 h after administration of 50 μg rHopQ-IR800 (TBR = 3.576) in our protocol. Orthotopic models demonstrated clear tumor margins of primary tumors and small regional metastases with a mean TBR = 3.678 (SD ± 1.027). rHopQ showed specific binding to various CEACAMs in PDOX models. rHopQ may be useful for CEACAM-positive tumor and metastasis detection for pre-surgical diagnosis, intra-operative imaging and fluorescence-guided surgery.