Objectives: Resin-based composites may leach monomers such as triethylene-glycol dimethacrylate (TEGDMA), which could contribute to intrapulpal inflammation. The aim of this investigation was to examine whether various concentrations of TEGDMA are able to influence dentally relevant Matrix metalloproteinase (MMP)-2, MMP-8, and MMP-9 production, total collagenase/gelatinase activity in pulp cells, and suggest possible signaling mechanisms.
Materials and methods: Pulp cells were cultured, followed by a 1-day exposure to sublethal TEGDMA concentrations (0.1, 0.2, and 0.75 mM). Total MMP activity was measured by an EnzCheck total collagenase/gelatinase assay, while the production of specific MMPs and the relative changes of phosphorylated, i.e., activated signaling protein levels of extracellular signal-regulated kinase (ERK)1/2, p38, c-Jun N-terminal kinase (JNK) were identified by western blot. Immunocytochemistry image data was also plotted and analyzed to see whether TEGDMA could possibly alter MMP production.
Results: An increase in activated MMP-2, MMP-8, and MMP-9 production as well as total collagenase activity was seen after a 24-h exposure to the abovementioned TEGDMA concentrations. Increase was most substantial at 0.1 (P = 0.002) and 0.2 mM (P = 0.0381). Concurrent p-ERK, p-p38, and p-JNK elevations were also detected.
Conclusions: Results suggest that monomers such as TEGDMA, leached from resin-based restorative materials, activate and induce the production of dentally relevant MMPs in pulp cells. Activation of ERK1/2, p38, or JNK and MMP increase may play a role in and/or can be part of a broader stress response. Clinical relevance Induction of MMP production and activity may further be components in the mechanisms of intrapulpal monomer toxicity.
Keywords: Composite resin; Cytotoxicity; Dental material; MMP; TEGDMA; Total collagenase activity.