Reproductive fitness in females is susceptible to obesogenic diets. Energy balance and reproduction are tightly regulated, in part, by hypothalamic neurons in the arcuate nucleus (ARC), and high-fat diet (HFD) can steadily increase estradiol levels in rodents. Estradiol regulates the reproductive axis via negative feedback mechanisms in ARC neurons by modulating pulsatile release of the gonadotropin luteinizing hormone (LH). However, it is unclear how the circulating estradiol milieu of adult females interacts with a state of high-caloric fat intake to alter LH pulse dynamics. Here, we used serial tail-tip blood sampling to measure pulsatile LH release at different estrous cycle stages in mice fed a HFD. Starting at 21 days of age, female C57BL/6J mice were freely fed with either regular chow diet (RD) or 60% kcal HFD for 12 weeks. Blood samples were collected once at diestrus, and then again at estrus. LH was measured in 10-minute intervals for 3 hours and analyzed for pulse frequency, amplitude, and mean and basal LH levels. Compared with RD-fed controls, mice fed HFD displayed significantly increased pulse frequency at diestrus, but not at estrus. HFD-fed mice also had lower mean and basal LH levels compared with RD-fed controls, but only during estrus. These data suggest that circulating estradiol can variably contribute to the impact that HFD has on LH pulsatile release and also provide insight into how obesity impacts women's reproductive health when ovarian estradiol levels drastically change, such as during menopause or with hormone replacement therapy.
Keywords: LH pulse; estrous cycle; high-fat diet; luteinizing hormone.
© Endocrine Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.