Band insulator to Mott insulator transition in 1T-TaS2

Nat Commun. 2020 Aug 24;11(1):4215. doi: 10.1038/s41467-020-18040-4.

Abstract

1T-TaS2 undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state. Here, we determine the electronic and structural properties of 1T-TaS2 using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2π/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS2 is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS2 only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the material's electronic properties.