Objectives: The current study examines the placental and maternal lipid profile and expression of genes involved in placental lipid metabolism in women with preeclampsia.
Methods: The current study includes normotensive control women (n = 40) and women with preeclampsia (n = 39). Preeclampsia women were further classified into women delivering at term preeclampsia (T-PE; n = 15) and preterm preeclampsia (PT-PE; n = 24).
Results: There were no significant differences in maternal lipid profile between the T-PE and normotensive control groups. Maternal plasma VLDL (P < 0.05) and ratios of total cholesterol : HDL (P < 0.05), atherogenic index [log (triglycerides/HDL)] (P < 0.01) and apolipoprotein B : apolipoprotein A (P < 0.05) were higher in the PT-PE group as compared with the normotensive control group. Placental total cholesterol and HDL levels were higher (P < 0.05) in the T-PE as compared with the normotensive control group. Higher placental triglycerides (P < 0.05) were observed in PT-PE group compared with T-PE group. Placental mRNA levels of peroxisome proliferator activated receptor α, carnitine palmitoyl transferase-1, cluster of differentiation 36 and lipoprotein lipases were lower (P < 0.05) in the PT-PE than normotensive control group. A negative association of mRNA levels of peroxisome proliferator activated receptor α (r = -0.246, P = 0.032; r = -0.308, P = 0.007, respectively), carnitine palmitoyl transferase-1 (r = -0.292, P = 0.011; r = -0.366, P = 0.001), lipoprotein lipases (r = -0.296, P = 0.010; r = -0.254, P = 0.028) with SBP and DBP was observed. There was a positive association of placental triglycerides (r = 0.244, P = 0.031) with DBP.
Conclusion: Women with preeclampsia exhibit higher lipid : lipoprotein ratios suggesting an atherogenic state particularly in women delivering preterm. Lower expression of genes involved in placental fatty acid oxidation and transport was also observed in preeclampsia.