Mining Public Domain Data to Develop Selective DYRK1A Inhibitors

ACS Med Chem Lett. 2020 Jun 30;11(8):1620-1626. doi: 10.1021/acsmedchemlett.0c00279. eCollection 2020 Aug 13.

Abstract

Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is desirable to achieve selective inhibition of the kinase of interest over the remaining ∼500 kinases in the human kinome. This is especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase β (GSK3β) and cyclin-dependent kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3β/CDK chemotype to deliver 8b, a highly selective DYRK1A inhibitor.