Quaternary ammonium chitooligosaccharides (QACOS) was incorporated onto the ZnO/palygorskite (ZnO/PAL) nanocomposite by a simple electrostatic self-assembly process to produce a new organic-inorganic nanocomposite (QACOS/ZnO/PAL) with excellent antibacterial activity. After loading QACOS, the Zeta potential of ZnO/PAL was changed from -26.7 to +30.3 mV, which facilitates to improve the targeting behavior of ZnO/PAL towards bacteria and its contact with bacteria, resulting in a significant improvement of antibacterial capability. The MIC values of QACOS/ZnO/PAL for inhibiting bacteria (0.5 mg/mL for E. coli and 1 mg/L for S. aureus) were superior to ZnO/PAL and QACOS, demonstrated an expected synergistic antibacterial effect between QACOS and ZnO/PAL. The improved contact and interface interaction between QACOS/ZnO/PAL and bacteria makes it easier to destroy the structural integrity of bacteria. As a whole, the incorporation of polysaccharide as regulators of surface charge opens up a new way to further enhance the antibacterial activity of inorganic antibacterial materials.
Keywords: Antibacterial activities; Chitooligosaccharides; Nanocomposites; Palygorskite; ZnO.
Copyright © 2020 Elsevier Ltd. All rights reserved.