General Control Non-repressed 5 protein (GCN5), encoded by the mammalian gene Kat2a, is the first histone acetyltransferase discovered to link histone acetylation to transcriptional activation [1]. The enzymatic activity of GCN5 is linked to cellular metabolic and energetic states regulating gene expression programs. GCN5 has a major impact on energy metabolism by i) sensing acetyl-CoA, a central metabolite and substrate of the GCN5 catalytic reaction, and ii) acetylating proteins such as PGC-1α, a transcriptional coactivator that controls genes linked to energy metabolism and mitochondrial biogenesis. PGC-1α is biochemically associated with the GCN5 protein complex during active metabolic reprogramming. In the first part of the review, we examine how metabolism can change GCN5-dependent histone acetylation to regulate gene expression to adapt cells. In the second part, we summarize the GCN5 function as a nutrient sensor, focusing on non-histone protein acetylation, mainly the metabolic role of PGC-1α acetylation across different tissues.
Keywords: Acetyl-CoA; Acetylation; GCN5; Glucose homeostasis; Metabolism; Mitochondria; PGC-1α.
Copyright © 2020 Elsevier B.V. All rights reserved.