A signal-amplified mercury sensing biosensor with desired sensitivity was developed through firstly using the GFP mutant with fluorescence increasing response towards Hg2+ as the reporter module. The developed biosensor showed response for Hg2+ in a relatively wide range of 1-10,000 nmol/L, and the detection limit was improved one or two orders of magnitude in comparison with most metal-sensing biosensors in similar constructs. In addition, the biosensor could distinguish Hg2+ easily from multiple metal ions and displayed strong adaptability to extensive pH conditions (pH 4.0-10.0). More importantly, the developed biosensor was able to provide an initial assessment of Hg2+ spiked in the environmental water with the recoveries between 85.70% and 112.50%. The signal-amplified strategy performed by the modified reporter module will be widely applicable to many other whole-cell biosensors, meeting the practical requirements with sufficient sensing performance.
Keywords: Environmental samples monitoring; Mercury sensing biosensor; Reporter module; Signal-amplified.
Copyright © 2020. Published by Elsevier B.V.