Integrative Methods and Practical Challenges for Single-Cell Multi-omics

Trends Biotechnol. 2020 Sep;38(9):1007-1022. doi: 10.1016/j.tibtech.2020.02.013. Epub 2020 Mar 26.

Abstract

Fast-developing single-cell multimodal omics (scMulti-omics) technologies enable the measurement of multiple modalities, such as DNA methylation, chromatin accessibility, RNA expression, protein abundance, gene perturbation, and spatial information, from the same cell. scMulti-omics can comprehensively explore and identify cell characteristics, while also presenting challenges to the development of computational methods and tools for integrative analyses. Here, we review these integrative methods and summarize the existing tools for studying a variety of scMulti-omics data. The various functionalities and practical challenges in using the available tools in the public domain are explored through several case studies. Finally, we identify remaining challenges and future trends in scMulti-omics modeling and analyses.

Keywords: analysis tools; integrative methods; single-cell multi-modality; single-cell sequencing technology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Algorithms
  • Computational Biology*
  • DNA Methylation / genetics
  • Genomics / trends*
  • Humans
  • Proteomics / trends*
  • Single-Cell Analysis / trends*