Stress negatively affects the gastrointestinal tract (GIT) barrier function, resulting in compromised animal health. A deeper understanding of how diet and stress impacts the GIT barrier function in feedlot cattle is needed. Aspirin decreases mucus production and mucosal repair in the GIT and could be used as a model for GIT barrier dysfunction research. The objective of this study was to evaluate the effectiveness of aspirin to induce GIT barrier dysfunction in beef cattle. In experiment 1, sixteen crossbred heifers (425.0 ± 8.6 kg) were allotted to 0, 50, 100, or 200 mg/kg body weight (BW) aspirin doses based on BW. Experiment 1 consisted of two periods separated by 4 wk where four heifers per treatment received the same aspirin dose during each period. Heifers were fed a 49.4% corn silage and 50.6% concentrate diet. The 200 mg/kg BW aspirin treatment was dosed as a 100 mg/kg BW aspirin oral bolus 36 and 24 h prior to Cr-ethylenediaminetetraacetic acid (EDTA) dosing (1 liter; 180 mM). The 50 and 100 mg/kg BW aspirin treatments were dosed as an oral bolus 24 h prior to Cr-EDTA dosing. Urine was collected every 3 h for 48 h and analyzed for Cr. Serum was collected at 0 and 48 h and analyzed for lipopolysaccharide-binding protein (LBP), interleukin-6, serum amyloid A (SAA), haptoglobin, and aspartate aminotransferase. In experiment 2, sixteen crossbred steers (576.0 ± 14.2 kg) fed a similar diet were allotted by BW to the 0 and 200 mg/kg BW aspirin treatments (eight steers/treatment) and were slaughtered 24 h after the last dose. Jejunal tissues were collected, and claudin (CLDN) 1, 2, and 3, occludin, and zonula occludens tight junction messenger ribonucleic acid (mRNA) expression was determined. Data were analyzed using the MIXED procedure of SAS. Urinary Cr excretion increased linearly at hours 3, 6, 9, and 12 (P ≤ 0.04) as aspirin dose increased from 0 to 200 mg/kg. Aspirin linearly increased Cr absorption (P = 0.02) and elimination (P = 0.04) rates and linearly decreased mean retention time of Cr (P = 0.02). Aspirin increased SAA (P = 0.04) and tended to increase LBP (P = 0.09) in serum but did not affect any other serum inflammatory marker (P ≥ 0.19). Aspirin tended to increase jejunal CLDN-1 mRNA expression (P = 0.10) but did not affect the mRNA expression of other genes regulating tight junction function (P ≥ 0.20). Results from this study indicate that aspirin disrupts the GIT barrier function in beef cattle and has a potential as a model in GIT permeability research.
Keywords: aspirin; beef feedlot; inflammation; leaky gut; tight junction.
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.