Ligand binding free-energy calculations with funnel metadynamics

Nat Protoc. 2020 Sep;15(9):2837-2866. doi: 10.1038/s41596-020-0342-4. Epub 2020 Aug 19.

Abstract

The accurate resolution of the binding mechanism of a ligand to its molecular target is fundamental to develop a successful drug design campaign. Free-energy calculations, which provide the energy value of the ligand-protein binding complex, are essential for resolving the binding mode of the ligand. The accuracy of free-energy calculation methods is counteracted by their poor user-friendliness, which hampers their broad application. Here we present the Funnel-Metadynamics Advanced Protocol (FMAP), which is a flexible and user-friendly graphical user interface (GUI)-based protocol to perform funnel metadynamics, a binding free-energy method that employs a funnel-shape restraint potential to reveal the ligand binding mode and accurately calculate the absolute ligand-protein binding free energy. FMAP guides the user through all phases of the free-energy calculation process, from preparation of the input files, to production simulation, to analysis of the results. FMAP delivers the ligand binding mode and the absolute protein-ligand binding free energy as outputs. Alternative binding modes and the role of waters are also elucidated, providing a detailed description of the ligand binding mechanism. The entire protocol on the paradigmatic system benzamidine-trypsin, composed of ~105 k atoms, took ~2.8 d using the Cray XC50 piz Daint cluster at the Swiss National Supercomputing Centre.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Graphics*
  • Ligands
  • Models, Molecular*
  • Molecular Targeted Therapy
  • Pharmaceutical Preparations / metabolism
  • Protein Binding
  • Protein Conformation
  • Thermodynamics
  • Time Factors
  • User-Computer Interface

Substances

  • Ligands
  • Pharmaceutical Preparations