Metals are widely used, from daily life to modern industry. Great efforts have been made to protect the metals with various coatings. However, the well-known conventional electrochemical corrosion induced by cations and the ubiquitous nature of the coffee-ring effect make these processes very difficult. Here, a scheme by two bridges of cations and ethylenediamine (EDA) is proposed to overcome the coffee-ring effect and electrochemical corrosion and experimentally achieve uniform, anticorrosive, and antiabrasive coatings on metallic surfaces. Anticorrosive capability reaches about 26 times higher than that without cation-controlled coatings at 12 h in extremely acidic, high-temperature, and high-humidity conditions and still enhances to 2.7 times over a week. Antiabrasive capability also reaches 2.5 times. Theoretical calculations show that the suspended materials are uniformly adsorbed on the surface mediated by complexed cations through strong cation-metal and cation-π interactions. Notably, the well-known conventional electrochemical corrosion induced by cations is avoided by EDA to control cations solubility in different coating processes. These findings provide a new efficient, cost-effective, facile, and scalable method to fabricate protective coatings on metallic materials and a methodology to study metallic nanostructures in solutions, benefitting practical applications including coatings, printing, dyeing, electrochemical protection, and biosensors.
Keywords: anticorrosive coatings; cation−metal interaction; cation−π interaction; coffee-ring effect; metal materials.