Purpose: The clinical implications of the metabolic parameters of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in epidermal growth factor receptor (EGFR)-mutated lung cancer are not fully understood. The aim of this study was to evaluate the diagnostic and prognostic utility of the parameters in EGFR-mutated lung cancer patients.
Patients and methods: We retrospectively enrolled 134 patients with advanced lung adenocarcinoma (72 EGFR-negative and 62 EGFR-positive). We evaluated the correlation between EGFR mutational status and the maximum standardized uptake value (SUVmax), as well as the associations between treatment outcomes in EGFR-mutated patients and various metabolic parameters of primary tumors. For the best predictive parameters, we calculated the metabolic tumor volume (MTV) and total lesion glycolysis (TLG) using two SUV cutoffs: 1.5 (MTV1.5, TLG1.5) and 2.5 (MTV2.5, TLG2.5).
Results: Mean SUVmax was lower for EGFR-mutated tumors compared with EGFR wild-type (6.11 vs 10.41, p < 0.001) tumors. Low SUVmax was significantly associated with positive EGFR mutation (odds ratio = 1.74). Multivariate analysis for survival demonstrated that high MTV1.5, TLG1.5, MTV2.5, and TLG2.5 were independently associated with shorter progression-free survival (PFS) and overall survival (OS), and the highest hazard ratios were found in TLG1.5 (3.26 for PFS and 4.62 for OS).
Conclusion: SUVmax may be predictive for EGFR mutational status, and MTV and TLG of primary tumors may be promising prognostic parameters; 18F-FDG PET/CT has potential utility for the risk stratification of EGFR-mutated patients treated with targeted therapy.
Keywords: 18F-fluorodeoxyglucose positron emission tomography-computed tomography; epidermal growth factor receptor mutation; lung cancer; metabolic parameters; survival.
© 2020 Hong et al.