Aims: Cancer Stem Cells (CSCs) refers to heterogeneous tumor cells retaining the abilities of self-renewal and differentiation. This study used mRNAsi, which is an index to describe the similarity between tumor cells and CSCs, to define genes involved in endometrial carcinoma.
Materials and methods: The mRNA expression profiles of 552 tumor samples and 23 non-tumor samples were calculated for differentially expressed genes. WGCNA was utilized to construct gene co-expression networks and classify screened genes into different modules. Univariate and multivariate Cox regression models were performed to identify and construct the prognostic model. Time-dependent receiver operating characteristic (ROC), Kaplan-Meier curve, multivariate Cox regression analysis, and nomogram were used to assess the prognostic capacity of the six-gene signature. The screened genes were further validated by GEO (GSE17025) and qRT-PCR in EC tissues.
Key findings: 2573 upregulated and 1890 downregulated genes were identified. A total of 35 genes in the turquoise module were identified as key genes. With multivariate analysis, six genes (DEPDC1, FAM83D, NCAPH, SPC25, TPX2, and TTK) up-regulated in endometrial carcinoma were identified, and their higher expression was associated with a higher stage/age/grade. Moreover, ROC and Kaplan-Meier plots indicated these genes had a high prognostic value for EC. A nomogram was constructed for clinical use. In addition, we explored the pathogenesis involving six genes. The results showed that these genes may become pathogenic as their copy numbers changes and methylation level reduces. Finally, GSEA revealed these genes had a close association with cell cycle, etc. SIGNIFICANCE: These findings may provide new insights into the treatment of diseases.
Keywords: Cancer Stem Cells; Endometrial carcinoma; Prognosis; WGCNA; mRNAsi.
Copyright © 2020 Elsevier Inc. All rights reserved.