With the deepening of industrialization and urbanization in China, air pollution has become the most serious environmental issue due to huge energy consumption, which threatens the health of residents and the sustainable development of the country. Increasing attention has been paid to the efficiency evaluation of industrial system due to its fast development and severe air pollution emissions, but the efficiency evaluation on China's industrial waste gas still has scope for improvement. This paper proposes a global non-radial Network Data Envelopment Analysis (NDEA) model from the perspective of pollution prevention (PP) and end-of-pipe treatment (ET), to explore the potential reduction of generation and emission of air pollutants in China's industrial system. Given the differences of different air pollution treatment capacities, the ET stage is further subdivided into three parallel sub-stages, corresponding to SO2, NOX, and soot and dust (SD), respectively. Then, grey relation analysis (GRA) is adopted to figure out the key factor affecting the unified efficiency. The main findings are summarized as follows: firstly, the unified efficiency of China's industrial waste gas underperformed nationwide, and most provinces had the potential to reduce the generation and emission of industrial waste gas. Secondly, the PP efficiency outperformed the ET efficiency in many provinces and the efficiency gap between two stages increasingly narrowed except in 2014. Thirdly, the unified efficiency in the eastern area performed well, while the area disparities increased significantly after 2012. Fourthly, significant differences were found in three ET efficiencies and the ET efficiency of NOX was higher than that of SO2 and SD in the sample period. Finally, the results of GRA indicated that different air pollutants had distinct influence on the improvement of the unified efficiency in three areas. To promote the unified efficiency of industrial waste gas, some pertinent policy suggestions are put forward from the perspectives of sub-stages, air pollutants and areas.
Keywords: end-of-pipe treatment; grey relation analysis; industrial waste gas; network data envelopment analysis; pollution prevention.