The present study investigated the effect of culture extracts (CB08035-SCA and CB08035-SYP) from Marinobacter hydrocarbonoclasticus (strain CB08035) on cell viability and the potential protective effects attributed to molecular mechanisms underlying antioxidant response to survive oxidative stress injuries. Caco-2 cells were submitted to oxidative stress by treatment with tert-butyl hydroperoxide (t-BOOH). Both extracts prevented cell damage and enhanced activity of antioxidant defenses (NQO1 and GST activities and GSH levels) reduced by treatment with t-BOOH. Increased ROS and caspase 3/7 activity induced by t-BOOH were dose-dependently prevented when cells were treated with the extracts. CB08035-SCA caused up-regulation of Nrf2, AKT1 and Bcl-2 gene expressions. Moreover, CB08035-SCA and CB08035-SYP treatments reduced significantly Bax, BNIP3, APAF1, ERK1, JNK1, MAPK1, NFκB1, TNFα, IL-6, IL-1β and HO-1 gene expressions of apoptosis, proinflammation and oxidative stress induced by t-BOOH. CB08035-SCA and CB08035-SYP CPE extracts confer a significant protection against oxidative insults to cells. Our results show that culture extracts CB08035-SCA and CB08035-SYP from M. hydrocarbonoclasticus (strain CB08035) appeared to have antioxidant potential, based on their ability to protect antioxidant enzymes and mRNA gene expressions linked to apoptosis/oxidative pathways. These results suggest that culture extracts CB08035-SCA and CB08035-SYP can be a potential ingredient in the pharmaceutical and cosmeceutical industries.
Keywords: CB08035-SCA and CB08035-SYP extracts; Caco-2 cells; Marinobacter hydrocarbonoclasticus (Strain CB08035); Oxidative stress; Phenyl-acetic derivatives.
Copyright © 2020 Elsevier Ltd. All rights reserved.