The T11 (CD2) antigen has been found to be an alternate pathway for antigen-independent activation of resting T cells. T11 triggering also results in activation of NK cells and enhancement of their cytolytic function. The present studies were carried out to further define the mechanisms whereby cytotoxicity is enhanced after T11 activation. A series of clonal human NK cell lines were analyzed after incubation with monoclonal anti-T112 and anti-T113 antibodies specific for different epitopes of the CD2 protein. Anti-T112/3 triggering resulted in increased cytotoxicity against a variety of target cells. Similar results were obtained with F(ab')2 fragments of anti-T112/3, indicating that this effect was not mediated through binding of FcR. The induction of cytotoxicity was found to be associated with increased formation of effector cell-target cell conjugates and with release of secretory granule-localized 35S-labeled proteoglycans. Both enhanced conjugate formation and cytotoxicity could be blocked by anti-lymphocyte function-associated antigen (LFA-1) mAb. Ultrastructural analysis of NK cells after T11 activation demonstrated increased adherence of effector cells to targets and other NK cells as well as a directional reorientation of cytoplasm and intracellular granules toward the area of contact between cells. Discharge of granules occurred into pockets bounded by closely apposed plasma membranes. In the presence of anti-LFA-1 and anti-T112/3, the close apposition and formation of pockets between effector cells and target cells did not occur but the cells exocytosed their intracellular granules. T11 activation of NK cloned cells also resulted in the formation of the homotypic conjugates and autocytotoxicity. As seen with resistant allogeneic targets, autocytotoxicity was mediated by F(ab')2 fragments of T112/3 antibodies and could be blocked by anti-LFA-1 antibody. Ultrastructural analysis of NK cloned cells after T11 activation confirmed the presence of homotypic conjugates with reorientation of effector cells toward one another and discharge of cytolytic granules into pockets formed between NK cloned cells. Taken together, these results indicate that T11-induced cytolytic function of NK cells is, in part, mediated through increased binding of effector cells and targets and that enhanced conjugate formation is at least in part mediated by the LFA-1 antigen. In addition, T11 activation results in the triggering of the cytolytic mechanism of NK cells and the exocytosis of cytolytic granules and their constituents.