Tanshinone IIA Promotes Axonal Regeneration in Rats with Focal Cerebral Ischemia Through the Inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC Signaling

Drug Des Devel Ther. 2020 Jul 15:14:2775-2787. doi: 10.2147/DDDT.S253280. eCollection 2020.

Abstract

Purpose: The aim of this study was to evaluate the neuroprotective effect of tanshinone IIA (TSA) on focal cerebral ischemia in rats and to investigate whether it was associated with Nogo-A/NgR1/RhoA/Rho-associated protein kinase 2 (ROCKII)/myosin light chain (MLC) signaling.

Methods: In this study, focal cerebral ischemia animal model was used. Neurological deficit scores and infarction volume were investigated to evaluate the neuroprotection of TSA. Hematoxylin-eosin staining, Nissl staining, and immunofluorescence staining were conducted to detect ischemic changes in brain tissue and changes in neurofilament protein 200 (NF200) and growth-associated protein-43 (GAP-43) expression, respectively. Western blotting and qRT-PCR analyses were used to detect the expression levels of NF200, GAP-43 and Nogo-A/NgR1/RhoA/ROCKII/MLC pathway-related signaling molecules.

Results: TSA treatment can improve the survival rate of rats, reduce the neurological score and infarct volume, and reduce neuron damage. In addition, TSA also increased axon length and enhanced expression of NF200 and GAP-43. Importantly, TSA significantly attenuated the expression of Nogo-A, NgR1, RhoA, ROCKII, and p-MLC, and thus inhibiting the activation of this signaling pathway.

Conclusion: TSA promoted axonal regeneration by inhibiting the Nogo-A/NgR1/RhoA/ROCKII/MLC signaling pathway, thereby exerting neuroprotective effects in cerebral ischemia rats, which provided support for the clinical application of TSA in stroke treatment.

Keywords: Nogo receptor; Rho-associated protein kinase; axonal regeneration; cerebral ischemia; neurite outgrowth inhibitor-A; neuroprotective effect; tanshinone IIA.

MeSH terms

  • Abietanes / chemistry
  • Abietanes / isolation & purification
  • Abietanes / pharmacology*
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / chemistry
  • Anti-Inflammatory Agents, Non-Steroidal / isolation & purification
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Axons / drug effects*
  • Axons / metabolism
  • Brain Ischemia / drug therapy*
  • Brain Ischemia / metabolism
  • Brain Ischemia / pathology
  • Disease Models, Animal
  • Humans
  • Molecular Structure
  • Myosin Light Chains / antagonists & inhibitors
  • Myosin Light Chains / metabolism
  • Nogo Proteins / antagonists & inhibitors
  • Nogo Proteins / metabolism
  • Nogo Receptor 1 / antagonists & inhibitors
  • Nogo Receptor 1 / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Salvia miltiorrhiza / chemistry
  • Signal Transduction / drug effects
  • rho GTP-Binding Proteins / antagonists & inhibitors
  • rho GTP-Binding Proteins / metabolism
  • rho-Associated Kinases

Substances

  • Abietanes
  • Anti-Inflammatory Agents, Non-Steroidal
  • Myosin Light Chains
  • Nogo Proteins
  • Nogo Receptor 1
  • Rtn4r protein, rat
  • myosin light chain I
  • tanshinone
  • rho-Associated Kinases
  • RhoA protein, rat
  • rho GTP-Binding Proteins