Neoantigen-based cancer immunotherapies hold the promise of being a truly personalized, effective treatment for diverse cancer types. ELISPOT assays, as a powerful experimental technique, can verify the existence of antigen specific T cells to support basic clinical research and monitor clinical trials. However, despite the high sensitivity of ELISPOT assays, detecting immune responses of neoantigen specific T cells in a patient or healthy donor's PBMCs is still extremely difficult, since the frequency of these T cells can be very low. We developed a novel experimental method, by co-stimulation of T cells with anti-CD28 and IL-2 at the beginning of ELISPOT, to further increase the sensitivity of ELISPOT and mitigate the challenge introduced by low frequency T cells. Under the optimal concentration of 1 μg/ml for anti-CD28 and 1 U/ml for IL-2, an 11.7-fold increase of T cell response against CMV peptide was observed by using our method, and it outperforms other cytokine stimulation alternatives (5-10 folds). We also showed that this method can be effectively applied to detect neoantigen-specific T cells in healthy donors' and a melanoma patient's PBMCs. To the best of our knowledge, this is the first report that the co-stimulation of anti-CD28 and IL-2 is able to significantly improve the sensitivity of ELISPOT assays, indicating that anti-CD28 and IL-2 signaling can act in synergy to lower the T cell activation threshold and trigger more neoantigen-specific T cells.
Keywords: Anti-CD28; ELISPOT; IL-2; Neoantigen; T cell activation; TCR frequency.
Copyright © 2020 Elsevier B.V. All rights reserved.