A photoactive porphyrinic metal-organic framework (MOF) has been prepared by exchanging Ti into a Zr-based MOF precursor. The resultant mixed-metal Ti/Zr porphyrinic MOF demonstrates much-improved efficiency for gas-phase CO2 photoreduction into CH4 and CO under visible-light irradiation using water vapor compared to the parent Zr-MOF. Insightful studies have been conducted to probe the photocatalysis processes. This work provides the first example of gas-phase CO2 photoreduction into methane without organic sacrificial agents on a MOF platform, thereby paving an avenue for developing MOF-based photocatalysts for application in CO2 photoreduction and other types of photoreactions.
Keywords: carbon dioxide; ion exchange; metal−organic frameworks; photocatalysis; porphyrinoids.
© 2020 Wiley-VCH GmbH.