Distribution, partitioning behavior, and ecological risk assessment of phthalate esters in sediment particle-pore water systems from the main stream of the Haihe River, Northern China

Sci Total Environ. 2020 Nov 25:745:141131. doi: 10.1016/j.scitotenv.2020.141131. Epub 2020 Jul 22.

Abstract

The distribution, partitioning behavior and risk assessment of phthalate esters (PAEs) in the surface sediment-pore water system of the Haihe River were investigated. The total cumulative concentrations of 21 PAE species (Σ21PAEs) in the surface sediment ranged from 45.9 to 1474.1 ng·g-1 dry weight (dw) and were from 17.9 to 2628.8 ng·mL-1 in the pore water. Di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP) were the dominant components, and their sum accounted, on average, for 88.4% and 72.0% of Σ21PAEs in the surface sediment and pore water, respectively. The spatial distributions of Σ21PAEs in the surface sediment and pore water indicated that large amounts of the consumed products contained plasticizers in the urban and nearshore areas and increased the discharge of PAEs into the Haihe River. The river dam also affected PAEs distributions. The organic carbon normalized partitioning coefficient (logKOC) followed a sequence as dry season (2.47 ± 0.35 mL·g-1) > wet season (2.02 ± 0.45 mL·g-1) > normal season (1.98 ± 0.42 mL·g-1). The risk quotient (RQ) method was employed to assess the potential ecological risk from specific species. High ecological risks of DEHP to the sensitive algae, crustacean, and fish species along with high ecological risks of DIBP to sensitive fish species were found in the surface sediment and pore water for all sampling seasons. In addition, DBP in the surface sediment and pore water exhibited moderate and high ecological risks to sensitive aquatic species. The highest RQ values for PAEs were found in the surface sediment and pore water in suburban and urban areas, respectively, and indicated that anthropogenic activities may cause severe river pollution and high risk to the local aquatic ecosystem. CAPSULE: High levels and ecological risks from PAEs were found in the urban river, and the partitioning behaviors of PAEs between the surface sediment and pore water were not significantly affected by their hydrophobicity, especially for species with low KOW.

Keywords: Compositional profile; Distribution and variation; Main stream of the Haihe River; Partitioning behavior; Phthalate esters.