To observe the efficacy of cinnamaldehyde on dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) with Can-dida albicans(Ca) colonization and its effect on dectin-1/TLRs/NF-κB signaling pathway in mice. C57 BL/6 mice were randomly divided into normal group, DSS group, DSS+Ca group, cinnamaldehyde group and mesalazine group. Mice in DSS+Ca group were given Ca(1×10~8 CFU per mouse) through intragastrical administration for 4 consecutive days and then distilled water with 3.0% DSS for 7 consecutive days. In cinnamaldehyde group and mesalazine group, in addition to the induction method of the DSS+Ca group, mice were given 75 mg·kg~(-1) cinnamaldehyde and 200 mg·kg~(-1) mesalazine accompanied with 3.0% DSS for 7 consecutive days, respectively. Mice in normal group and DSS group were correspondingly administered with distilled water. The general conditions of the mice were observed daily, the diseased activity index(DAI) score was calculated, and fungal loads of feces were detected by plate method. The mice were sacrificed on day 12, colon length was measured, colon mucosa damage index(CMDI) score was calculated, and histopathological analysis was carried out by HE staining. Anti-saccharomces cerevisiae antibody(ASCA) and β-1,3-glucan in serum, and TNF-α, IL-1β, IL-6, IL-8, IL-10 in serum and colon tissue were detected by ELISA. The contents of β-1,3-glucan and macrophage infiltration in colon tissues were examined by immunofluorescence staining. The protein expressions of dectin-1, TLR2, TLR4 and NF-κB were detected by Western blot and immunohistochemistry staining. The results showed that cinnamaldehyde could significantly improve the general conditions of UC mice with Ca colonization, decrease DAI and histopathological scores, reduce intestinal mucosal congestion, erosion and colon shortening, decrease Ca load in mouse feces and tissues, down-regulate the contents of ASCA and β-1,3-glucan in serum, reduce the contents of TNF-α, IL-1β, IL-6, IL-8 and increase IL-10 in serum and colon tissues, inhibit macrophages infiltration and down-regulate the protein expression of dectin-1, TLR2, TLR4 and NF-κB in colon tissue. These results suggested that cinnamaldehyde had a therapeutic effect on UC mice with Ca colonization, which might be related to the inhibition of Ca proliferation, the regulation of dectin-1/TLRs/NF-κB signaling pathways and the coordination of the balance between pro-inflammatory and anti-inflammatory factors.
Keywords: Candida albicans; cinnamaldehyde; dectin-1/TLRs/NF-κB signaling pathway; ulcerative colitis.