Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency, characterized by severe intellectual and motor disability. The MCT8 protein is predicted to have 12 transmembrane domains (TMDs) and is expressed as monomers, homodimers, and homo-oligomers. This study aimed to delineate the mechanism of MCT8 oligomerization. Coimmunoprecipitation studies demonstrated that lithium dodecyl sulfate effectively disrupts MCT8 protein complexes, indicating the involvement of non-covalent interactions. Successive C-terminal truncations of the MCT8 protein altered the oligomerization pattern only if introduced in the N-terminal half of the protein (TMD1-6). The truncation at extracellular loop 1 (E206X) still allowed homodimerization, but completely abrogated homo-oligomerization, whereas both were preserved by the C231X mutant (at TMD2), suggesting that the minimally required oligomerization sites are located proximal of Cys231. However, mutant constructs lacking the intracellular N-terminus or TMD1 and 2 were still capable to form homo-oligomers. Therefore, other domains distal of Cys231 are also likely to be involved in the formation of extensive multidomain interactions. This hypothesis was supported by structural modeling. Despite multiple approaches, MCT8 oligomerization could not be fully abrogated unless a substantial part of the protein was removed, precluding detailed studies into its functional role. Together, our findings suggest that MCT8 oligomerization involves extensive noncovalent interactions between the N-terminal halves of MCT8 proteins. Most mutations identified in patients with MCT8 deficiency have only minor effects on MCT8 oligomerization and, thus, impaired oligomerization does not appear to be an important pathogenic mechanism.
Keywords: AHDS; MCT8; dimerization; oligomerization; thyroid hormone; thyroid hormone transporter.
© Endocrine Society 2020.