Background: The number of deaths worldwide caused by coronavirus disease (COVID-19) is increasing rapidly. Information about the clinical characteristics of patients with COVID-19 who were not admitted to hospital is limited. Some risk factors of mortality associated with COVID-19 are controversial (eg, smoking). Moreover, the impact of city closure on mortality and admission rates is unknown.
Objective: The aim of this study was to explore the risk factors of mortality associated with COVID-19 infection among a sample of patients in Wuhan whose conditions were reported on social media.
Methods: We enrolled 599 patients with COVID-19 from 67 hospitals in Wuhan in the study; 117 of the participants (19.5%) were not admitted to hospital. The demographic, epidemiological, clinical, and radiological features of the patients were extracted from their social media posts and coded. Telephone follow-up was conducted 1 month later (between March 15 and 23, 2020) to check the clinical outcomes of the patients and acquire other relevant information.
Results: The median age of patients with COVID-19 who died (72 years, IQR 66.5-82.0) was significantly higher than that of patients who recovered (61 years, IQR 53-69, P<.001). We found that lack of admission to hospital (odds ratio [OR] 5.82, 95% CI 3.36-10.1; P<.001), older age (OR 1.08, 95% CI 1.06-1.1; P<.001), diffuse distribution (OR 11.09, 95% CI 0.93-132.9; P=.058), and hypoxemia (odds ratio 2.94, 95% CI 1.32-6.6; P=.009) were associated with increasing odds of death. Smoking was not significantly associated with mortality risk (OR 0.9, 95% CI 0.44-1.85; P=.78).
Conclusions: Older age, diffuse distribution, and hypoxemia are factors that can help clinicians identify patients with COVID-19 who have poor prognosis. Our study suggests that aggregated data from social media can also be comprehensive, immediate, and informative in disease prognosis.
Keywords: COVID-19; clinical characteristic; coronavirus; infectious disease; mortality; outcome; prognosis, China; risk factors; social media; web-based data.
©Dong Liu, Yuyan Wang, Juan Wang, Jue Liu, Yongjie Yue, Wenjun Liu, Fuhai Zhang, Ziping Wang. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 13.08.2020.