Coronavirus disease 2019, i.e. COVID-19, started as an outbreak in a district of China and has engulfed the world in a matter of 3 months. It is posing a serious health and economic challenge worldwide. However, case fatality rates (CFRs) have varied amongst various countries ranging from 0 to 8.91%. We have evaluated the effect of selected socio-economic and health indicators to explain this variation in CFR. Countries reporting a minimum of 50 cases as on 14th March 2020, were selected for this analysis. Data about the socio-economic indicators of each country was accessed from the World bank database and data about the health indicators were accessed from the World Health Organisation (WHO) database. Various socioeconomic indicators and health indicators were selected for this analysis. After selecting from univariate analysis, the indicators with the maximum correlation were used to build a model using multiple variable linear regression with a forward selection of variables and using adjusted R-squared score as the metric. We found univariate regression results were significant for GDP (Gross Domestic Product) per capita, POD 30/70 (Probability Of Dying Between Age 30 And Exact Age 70 From Any of Cardiovascular Disease, Cancer, Diabetes or Chronic Respiratory Disease), HCI (Human Capital Index), GNI(Gross National Income) per capita, life expectancy, medical doctors per 10000 population, as these parameters negatively corelated with CFR (rho = -0.48 to -0.38 , p<0.05). Case fatality rate was regressed using ordinary least squares (OLS) against the socio-economic and health indicators. The indicators in the final model were GDP per capita, POD 30/70, HCI, life expectancy, medical doctors per 10,000, median age, current health expenditure per capita, number of confirmed cases and population in millions. The adjusted R-squared score was 0.306. Developing countries with a poor economy are especially vulnerable in terms of COVID-19 mortality and underscore the need to have a global policy to deal with this on-going pandemic. These trends largely confirm that the toll from COVID-19 will be worse in countries ill-equipped to deal with it. These analyses of epidemiological data are need of time as apart from increasing situational awareness, it guides us in taking informed interventions and helps policy-making to tackle this pandemic.