To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.