Horses (Equus ferus caballus) have evolved over the past 300 years in response to man-made selection for particular athletic traits. Some of the selected traits were selected based on the size and horses' muscular power (eg Clydesdales), whereas other breeds were bred for peak running performance (eg Thoroughbred and Arabian). Although the physiological changes and some of the cellular adaptations responsible for athletic potential of horses have been identified, the molecular mechanisms are only just beginning to be comprehensively investigated. The purpose of this review was to outline and discuss the current understanding of the molecular mechanisms underpinning the athletic performance and cardiorespiratory fitness in athletic breeds of horses. A brief review of the biology of epigenetics is provided, including discussion on DNA methylation, histone modifications and small RNAs, followed by a summary and critical review of the current work on the exercise-induced epigenetic and transcriptional changes in horses. Important unanswered questions and currently unexplored areas that deserve attention are highlighted. Finally, a rationale for the analysis of epigenetic modifications in the context with exercise-related traits and ailments associated with athletic breeds of horses is outlined in order to help guide future research.
Keywords: Equus caballus; epigenetic modifications; gene; horse; racehorse; small RNAs.
© 2020 EVJ Ltd.