The imprints left by persistent DNA viruses in the tissues can testify to the changes driving virus evolution as well as provide clues on the provenance of modern and ancient humans. However, the history hidden in skeletal remains is practically unknown, as only parvovirus B19 and hepatitis B virus DNA have been detected in hard tissues so far. Here, we investigated the DNA prevalences of 38 viruses in femoral bone of recently deceased individuals. To this end, we used quantitative PCRs and a custom viral targeted enrichment followed by next-generation sequencing. The data was analyzed with a tailor-made bioinformatics pipeline. Our findings revealed bone to be a much richer source of persistent DNA viruses than earlier perceived, discovering ten additional ones, including several members of the herpes- and polyomavirus families, as well as human papillomavirus 31 and torque teno virus. Remarkably, many of the viruses found have oncogenic potential and/or may reactivate in the elderly and immunosuppressed individuals. Thus, their persistence warrants careful evaluation of their clinical significance and impact on bone biology. Our findings open new frontiers for the study of virus evolution from ancient relics as well as provide new tools for the investigation of human skeletal remains in forensic and archaeological contexts.
Keywords: DNA viruses; Femoral bone; Human provenance; NGS; Parvovirus B19 genotype 2, Papillomavirus 31.
Copyright © 2020. Published by Elsevier B.V.