The statistical importance of a study for a network meta-analysis estimate

BMC Med Res Methodol. 2020 Jul 14;20(1):190. doi: 10.1186/s12874-020-01075-y.

Abstract

Background: In pairwise meta-analysis, the contribution of each study to the pooled estimate is given by its weight, which is based on the inverse variance of the estimate from that study. For network meta-analysis (NMA), the contribution of direct (and indirect) evidence is easily obtained from the diagonal elements of a hat matrix. It is, however, not fully clear how to generalize this to the percentage contribution of each study to a NMA estimate.

Methods: We define the importance of each study for a NMA estimate by the reduction of the estimate's variance when adding the given study to the others. An equivalent interpretation is the relative loss in precision when the study is left out. Importances are values between 0 and 1. An importance of 1 means that the study is an essential link of the pathway in the network connecting one of the treatments with another.

Results: Importances can be defined for two-stage and one-stage NMA. These numbers in general do not add to one and thus cannot be interpreted as 'percentage contributions'. After briefly discussing other available approaches, we question whether it is possible to obtain unique percentage contributions for NMA.

Conclusions: Importances generalize the concept of weights in pairwise meta-analysis in a natural way. Moreover, they are uniquely defined, easily calculated, and have an intuitive interpretation. We give some real examples for illustration.

Keywords: Network meta-analysis; Study contribution; Study importance; Study weight.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Network Meta-Analysis*