Chiral mineral surfaces, such as quartz, are attractive substrates for use in enantioselective separation and may have contributed to the origin of biological homochirality. In this work, we apply density-functional theory and the exchange-hole dipole moment (XDM) dispersion model to study the adsorption of 5 amino acids (glycine, serine, alanine, valine, and phenylalanine) on a hydroxylated α-quartz (0001) surface. It is demonstrated that London dispersion is responsible for 30-50% of the total adsorption energies and its inclusion or omission can reverse predictions of enantioselectivity. Differing dispersion stabilization, caused by the opposing side-chain placements relative to the quartz surface, lead to differences of 1.0 and 1.8 kcal mol-1 in the adsorption energies of the alanine and phenylalanine enantiomers, respectively. These results are consistent with a 3-point model, with the hydrogen-bonding sites conserved and variations in the dispersion interactions determining enantioselectivity.