Every year, millions of people in the US suffer brain damage from mild to severe traumatic brain injuries (TBI) that result from a sudden impact to the head. Despite TBI being a leading cause of death and disability worldwide, sex differences that contribute to varied outcomes post-injury are not extensively studied and therefore, poorly understood. In this study, we aimed to explore biological sex as a variable influencing response to TBI using Drosophila melanogaster as a model, since flies have been shown to exhibit symptoms commonly seen in other mammalian models of TBI. After inflicting TBI using the high-impact trauma device, we isolated w 1118 fly brains and assessed gene transcription changes in male and female flies at control and 1, 2, and 4 hr after TBI. Our results suggest that overall, Drosophila females show more gene transcript changes than males. Females also exhibit upregulated expression changes in immune response and mitochondrial genes across all time-points. In addition, we looked at the impact of injury on mitochondrial health and motor function in both sexes before and after injury. Although both sexes report similar changes in mitochondrial oxidation and negative geotaxis, locomotor activity appears to be more impaired in males than females. These data suggest that sex-differences not only influence the response to TBI but also contribute to varied outcomes post-injury.
Keywords: TBI; bimodal recovery; immune; mitochondria; sex-differences.
Copyright © 2020 Shah, Gurdziel and Ruden.