The molecular biology of ependymomas is not well understood and this is particularly true for ependymoma relapses. We aimed at finding out if and to which extent, relapses differ from their corresponding primary tumors on the morphological, chromosomal and epigenetic level. We investigated 24 matched ependymoma primary and relapsed tumor samples and, as a first step, compared cell density, necrosis, vessel proliferation, Ki67 proliferative index, trimethylation at H3K27 and expression of CXorf67. For the investigation of global methylation profiles, we used public data in order to analyze copy number variation profiles, differential methylation, methylation status and fractions of hypo- and hypermethylated CpGs in different epigenomic substructures. Morphologically, we found a significant increase with relapse in cell density and proliferation. H3K27 trimethylation and CXorf67 expression remained stable between primary and relapse tumor samples, and the analysis of DNA methylation profiles neither revealed significant differences in copy number variations nor differentially methylated regions. Significant differences in the methylation status were found for CpG islands, but also in N Shelves or S Shelves, depending on the molecular subgroup. The fraction of probes changing their methylation in the epigenomic substructures appeared subgroup-specific. Most changes occur in CpG islands, for which relapsed tumors demonstrate higher methylation values than primary tumors. The morphological differences reflect increased aggressiveness upon ependymoma relapse, but, despite slight changes, this observation does not appear to be sufficiently explained by epigenetic changes.
Keywords: ependymoma; methylation; morphology; relapse.
© 2020 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.