Lead source and bioaccessibility in windowsill dusts within a Pb smelting-affected area

Environ Pollut. 2020 Nov;266(Pt 2):115110. doi: 10.1016/j.envpol.2020.115110. Epub 2020 Jun 29.

Abstract

Windowsill, heavy metal-containing dust samples, collected at different building heights, may provide some insight into both source and human health risk. Windowsill dust samples were collected from the 1st to 9th floor (1.4-23.2 m above ground) near a lead smelter (1 km to the smelter) and in urban areas (4.2-7.3 km to the smelter) and separated into <10, 10-45 and 45-125 μm size fractions. Samples were extracted with artificial lysosomal fluid (ALF) and the physiologically based extraction test (PBET) (<10 μm fractions only), subjected to scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) and Pb isotopic analysis. Greater Pb concentrations were found in 10-45 μm fraction than the other size fractions; at the PX site, dust Pb concentrations increased with windowsill height, while an opposite trend was found at other sites. Isotopic analysis and SEM-EDS results supported this contention. Higher floor samples collected near the smelter were more affected by lead smelting than lower floor samples; lower floor samples collected at urban sites were more affected by resuspended Pb-laden particles from the ground than higher floors. The Pb bioaccessible fraction (BAF) in the ALF and PBET ranged between 68.9-90.1 and 1.3-17.0%, respectively; urban samples had greater BAF values than samples collected near the smelter. This, first of its kind investigation regarding Pb in dusts at different building heights, provides further insight for reducing human health risks within Pb smelter vicinities.

Keywords: Building height; Human health risk; Lead isotopic signatures; Windowsill dust.

MeSH terms

  • Dust / analysis*
  • Environmental Monitoring
  • Humans
  • Lead
  • Soil Pollutants / analysis*

Substances

  • Dust
  • Soil Pollutants
  • Lead