Background: The disease burden caused by pulmonary tuberculosis (TB) in Sichuan province still persisted at a high level, and large spatial variances were presented across regional distribution disparities. The socio-economic factors were suspected to affect the population of TB notification, we aimed to describe TB case notification rate (CNR) and identify which factors influence TB epidemic are necessary for the prevention and control of the disease in Sichuan province.
Methods: A retrospective cross-sectional study and an ecological spatial analysis was conducted to quantify the presence and location of spatial clusters of TB by the Moran's I index and examined these patterns with socio-economic risk factors by hierarchical Bayesian spatio-temporal model.
Results: A total of 630,009 pulmonary TB cases were notified from 2006 to 2015 in 181 counties of Sichuan province. The CNR decreased year by year since 2007, from 88.70 to 61.37 per 100,000 persons. The spatial heterogeneities of CNR were observed during the study periods. Global Moran's I index varied from 0.23 to 0.44 with all P-value < 0.001. The Bayesian spatio-temporal model with parametric spatio-temporal interactions was chosen as the best model according to the minimum of Deviance Information Criterion (DIC)(19,379.01), and in which the quadratic form of time was taken. The proportion of age group and education year were all associated with CNR after adjusting the spatial effect, temporal effect and spatio-temporal interactions. TB CNR increased by 10.2% [95% credible interval (CI): 6.7-13.7%] for every 1-standard-deviation increase in proportion of age group and decreased by 23% (95% CI: 13.7-32.7%) for every 1-standard-deviation increase in education year.
Conclusions: There were spatial clusters of TB notification rate in Sichuan province from 2006 to 2015, and heavy TB burden was mainly attributed to aging and low socioeconomic status including poor education. Thus, it is more important to pay more attention to the elderly population and improve socioeconomic status including promoting education level in Sichuan province to reduce the TB burden.
Keywords: Hierarchical Bayesian spatio-temporal model; Moran’s I; Social-economic factor; Tuberculosis.