The automated analysis of digitized immunohistochemistry microscope slides is usually a challenging task, because markers should be analysed on the tumor area only. Tumor areas could be recognized on a different slide, stained with Haematoxylin-Eosin. The basic idea of the present poster is to evaluate how well deep learning methods perform on the single haematoxylin component of staining, with the prospective possibility of developing a classifier able to recognize tumor areas on IHC slides on their haematoxylin component only. In a preliminary experiment, single stain images obtained by H-E color deconvolution showed an accuracy of 0.808 and 0.812 for Hematoxilyn and Eosin components, respectively.
Keywords: Deep Learning; Digital slides; cancer.