A risk assessment method for remote sensing of cyanobacterial blooms in inland waters

Sci Total Environ. 2020 Oct 20:740:140012. doi: 10.1016/j.scitotenv.2020.140012. Epub 2020 Jun 6.

Abstract

The widespread occurrence of Cyanobacterial blooms (CABs) in inland waters is a typical and severe challenge for water resources management and environment protection. An accurate and spatially continuous risk assessment of CABs is critical for prediction and preparedness in advance. In this study, a multivariate integrated risk assessment (MIRA) method of CABs in inland waters was proposed. MIRA was simplified with the trophic levels, cyanobacterial and other aquatic plant condition using remote sensing indexes, including the Trophic State Index (TSI), Floating Algae Index (FAI) and Cyanobacteria and Macrophytes Index (CMI). First, the dates of risk assessment were carefully selected based on TSI. Then, we obtained the trophic levels, cyanobacterial, and other aquatic plant condition of water using TSI, CMI and FAI on the selected date, and further scored them pixel by pixel to quantify the risk value. Finally, the risk of CABs in water was accurately assessed based on the pixel risk value. Based on Landsat 8 OLI dataset, MIRA was executed and validated in three different lakes of Wuhan urban agglomeration (WUA) with different trophic states. The results demonstrated that the risk of CABs in Lake LongGan was overall higher than that in Lake LiangZi and Lake FuTou. And the risk of CABs in the east part of Lake LongGan was higher than the other parts. Seasonally, the risk level ranking in Lake LiangZi was the highest in summer, while lowest in winter. However, the seasonal risk ranking was spring, summer, autumn, and winter in Lake LongGan. Based on the comparisons with monthly water quality classification data and results of the existing study, including trophic level, ecology risk, and algal extent, the MIRA method was valuable for accurate and spatially continuous identifying the risk of CABs in inland waters with potential eutrophication trends.

Keywords: Aquatic plants; Cyanobacterial; Inland waters; Landsat 8 OLI; Risk assessment; Trophic level.

MeSH terms

  • Cyanobacteria*
  • Environmental Monitoring
  • Eutrophication
  • Lakes
  • Remote Sensing Technology*
  • Risk Assessment