Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal-organic framework encapsulating a trinuclear FeIII 2 FeII complex (denoted as Fe3 ) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII /CoII ) via synthesizing isostructural trinuclear-complex precursors (Fe2 Zn/Fe2 Co), namely the "heteroatom modulator approach", is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal-nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal-metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.
Keywords: Zn-air battery; metal nanoclusters; metal-organic frameworks; oxygen evolution reaction; single atom catalyst.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.