Colloidal Synthesis of Nanohelices via Bilayer Lattice Misfit

J Am Chem Soc. 2020 Jul 22;142(29):12777-12783. doi: 10.1021/jacs.0c05175. Epub 2020 Jul 7.

Abstract

Helical structures are ubiquitous in natural and synthetic materials across multiple length scales. Excellent and sometimes unusual chiral optical, mechanical, and sensing properties have been previously demonstrated in such symmetry-breaking shape, yet a general principle to realize helical structures at the sub-100 nm scale via colloidal synthesis remains underexplored. In this work, we describe the wet-chemical synthesis of monodisperse nanohelices based on gadolinium oxide (Gd2O3). Aberration-corrected electron microscopy revealed that individual nanohelices consist of a bilayer structure with the outer and inner layers derived from the {111} and {100} planes of bulk Gd2O3, respectively. Distinct from existing inorganic nanocoils with flexible bending geometries, the built-in lattice misfit between two adjacent crystal planes induces continuous helical growth yielding three-dimensional rigid nanohelices. Furthermore, the presence of water in the reaction was found to suppress the formation of nanohelices, producing nanoplates expressing predominantly {111} planes. Our study not only provides a bottom-up synthetic route and mechanistic understanding of nanohelices formation but may also open up new possibilities for creating chiral plasmonic nanostructures, luminescent biological labels, and nanoscale transducers.