Zygosaccharomyces rouxii produces high levels of 4-hydroxy-2,5-dimethyl-3(2H)-furanone in YPD medium supplemented with 120 g/L D-fructose and 180 g/L NaCl after 5 d. D-fructose has a stress effect on Z. rouxii, and GSH-Px is a main enzyme involved in the defense of Z. rouxii against oxygen stress according to our previous report. In order to further explore the molecular mechanism of the glutathione metabolism pathway in Z. rouxii in response to D-fructose stress, changes in the expression of genes and proteins involved in the synthesis of glutathione precursor amino acids and enzymes were observed. In addition, changes in the intermediates related to glutathione synthesis in Z. rouxii were reported. The results indicated that some gene-encoding enzymes involved in the glutamate, cysteine and glycine biosynthesis pathways and key genes involved in glutathione synthesis were upregulated. The expression levels of other genes, except SHMT, were consistent with the qRT-PCR results. The contents of γ-glutamylcysteine and glutathione amide in the D-fructose group were higher than those in the control group. In the D-fructose stress groups, the metabolic flux towards glutathione synthesis was increased. These results might provide more in-depth and detailed theoretical support for the oxidative stress defense mechanism of Z. rouxii under D-fructose stress.
Keywords: Zygosaccharomyces rouxii; D-fructose stress; glutathione metabolism pathway; molecular mechanism.
© FEMS 2020.